A fresh look at dense hydrogen under pressure. III. Two competing effects and the resulting intra-molecular H-H separation in solid hydrogen under pressure.

نویسندگان

  • Vanessa Labet
  • Roald Hoffmann
  • N W Ashcroft
چکیده

A preliminary discussion of the general problem of localization of wave functions, and the way it is approached in theoretical condensed matter physics (Wannier functions) and theoretical chemistry (localized or fragment orbitals) is followed by an application of the ideas of Paper II in this series to the structures of hydrogen as they evolve under increasing pressure. The idea that emerges is that of simultaneously operative physical (reduction of available space by an increasingly stiff wall of neighboring molecules) and chemical (depopulation of the σ(g) bonding molecular orbital of H(2), and population of the antibonding σ(u)∗ MO) factors. The two effects work in the same direction of reducing the intermolecular separation as the pressure increases, but compete, working in opposite directions, in their effect on the intramolecular (nearest neighbor, intra-pair) distance. We examine the population of σ(g) and σ(u)∗ MOs in our numerical laboratory, as well as the total electron transfer (small), and polarization (moderate, where allowed by symmetry) of the component H(2) molecules. From a molecular model of two interacting H(2) molecules we find a linear relationship between the electron transfer from σ(g) to σ(u)∗ of a hydrogen molecular fragment and the intramolecular H-H separation, and that, in turn, allows us to estimate the expected bond lengths in H(2) under pressure if the first effect (that of simple confinement) was absent. In essence, the intramolecular H-H separations under pressure are much shorter than they would be, were there no physical/confinement effect. We then use this knowledge to understand how the separate E and PV terms contribute to hydrogen phase changes with increasing pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pressure loading rate on the crystallographic texture of NdFeB nanocrystalline magnets

Related Articles A fresh look at dense hydrogen under pressure. III. Two competing effects and the resulting intra-molecular H-H separation in solid hydrogen under pressure J. Chem. Phys. 136, 074503 (2012) A reconstruction of cubic rs-ZnO on MgO (200) substrate through (100) plane of w-ZnO:rs-ZnO for transparent electronic application Appl. Phys. Lett. 100, 072102 (2012) First-principles inves...

متن کامل

Preparation of Carbon Molecular Sieves from Pistachio Shell and Walnut Shell for Kinetic Separation of Carbon Monoxide, Hydrogen, and Methane

In this study, two Carbon Molecular Sieves using Pistachio shell (CMS P) and Walnut shell (CMS W) were prepared by a chemical vapor deposition method and used for pressure swing adsorption and separation of CO/H2 and CO/CH4. Adsorption isotherms of gases obtained for both CMS’s. The Dubinin-Radushkevich isotherm model was used for comparing pore volum...

متن کامل

Preparation of BaCe0.9Yb0.1O3-δ asymmetrical membrane for hydrogen separation at high tempratures

A mixed proton–electron conducting perovskite was synthesized by liquid-citrate method and the corresponding membrane was prepared by pressing followed by sintering. The hydrogen permeability of BaCe0.9Yb0.1O3-δ was studied as a function of temperature and hydrogen partial pressure (PH2) gradient. Using 100% dry hydrogen at 1173 K, the hydrogen permeation rate of dense membranes (1.63 mm thick)...

متن کامل

Theoretical Performance Evaluation of Inorganic (Non Pd-Based) Membranes for Hydrogen Separation

The aim of this work theoretical study is to theoretically investigate a inorganic membrane assisted purifcation process of an H2-rich stream derived from a conventional methanol steam reforming stage. In particular, a black-box model for multicomponent gas mixture purifcation is dev...

متن کامل

Synthesis of WC-8Co cermet powder in WO3-Co3O4-C system by in situ carbothermic solid reduction method under hydrogen atmosphere: (phase, microstructural and thermodynamic analysis)

WC-Co cermets are among the advanced engineering materials that are considered for their special properties such as abrasion resistance and high hardness. The aim of this study was to determine the optimal amount of carbon in raw materials and industrial production of WC-8Co cermet powder from metal oxides WO3, Co3O4 and activated carbon by solid carbothermic reduction method in situ and under ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 7  شماره 

صفحات  -

تاریخ انتشار 2012